
Grammar and API for Rational Rose Petal files

M. Dahm

July 19, 2001

Version 1.1

1 Introduction

Rational Rose [2] is probably the most widely used tool for software engineering processes, al-
though it has several deficiencies (which we will not discuss here). In the CRAZYBEANS project I
tried to tackle one of them related to the “roundtrip engineering” process. One can import source
files into Rose and create class diagrams from them. Vice versa one can create classes (and IDL
specifications or whatever you need) from class (and other) diagrams. Yet these creation pro-
cesses can not be influenced by the user in a convenient, flexible and extensible way. Another
problem is that these models are proprietary and some people would like to have the possibility
to write a converter for these models into a different format used by another tool.

Every application developed and also every company follows different policies and may need
different conventions for the generated code. So it is clearly desirable for them to influence the
way in which diagrams and other data are mapped to source code and vice versa. For example,
one company might have the convention to attach notes to classes and associations containing
OCL [1] statements (or whatever). Rose wouldn’t not not regard them when creating code, but a
tool specifically adapted for this need could do so.

So how can all this be accomplished? Well, the easiest way is to have an API that is capable
of reading and writing the files created by Rational Rose, called “Petal files” (ending with .mdl
or .ptl ) which contain the given model of the application. The file format is undocumented, I’ll
try to explain it in the following sections anyway. The CRAZYBEANS API to read and write these
files is explained in section 5.

1.1 Petal file format

The format of petal files generated by Rational Rose (ending with .mdl or .ptl ) is not docu-
mented, yet it is an ASCII format, fortunately. We have been able to match several entities of its
contents to what you see on the screen. Yet we do not understand all of it and some parts of the
file seem not to be of general interest. I focused mostly on interpreting class diagrams, though
use case und other diagrams can be analyzed, too.

The file format looks roughly like a lisp data structure, consisting of several nested levels
enclosed in parentheses which form a tree of nodes. Take a look at one of your files yourself to
see what I mean. The main data structure are “objects”, i.e., items like

(object Petal
version 42
_written "Rose 4.5.8163.3"
charSet 0)

These objects always have a name (“Petal” in the example), optional parameter strings and
an optional tag. The general form of is shown in section 2.2. There is quite a number of different

1



kinds objects. We mapped them to Java classes which can be found in the package cb.petal .
The file format itself is not very “object-oriented”, but we tried to use subclassing wherever it
made sense. All objects have a number of properties which are mapped to set/get methods in the
Java classes. A special property is the “quid” (which probably stands for “qualified identifier”),
a globally unique identfier (coded as a hexadecimal number) for an object. References to other
objects (e.g. an associaton) are defined by the “quidu” property.

There are two parts of a petal file which are of general interest for us: One section specifies the
data model (classes, associations, ...) and another one specifies the “views” for the model (there
may be many). The views are what you see on the screen although the underlying model may
contain more information. This model-view pattern might ring a bell for some readers... Views
may also contain additional “notes” which are not part of the data model but can be thought of
as some kind of comments.

The following section gives an (incomplete) BNF grammar for petal files.

2 The grammar

Identifiers in angle brackets denote non-terminals, text in double-quotes denotes strings, bold
text denotes terminal symbols. Comments are written italic and start with two slashes. Not all
existing petal objects are listed here, because there are too many. However, the generic form is
shown in section 2.2 which all petal objects conform to. Please refer to the concrete Java files
in package cb.petal for details of the adjustable properties. The order of properties does not
matter in most cases (sometimes Rose seems to be picky). The ugly thing is that property names
may occur multiply, e.g., an object may have multiple “label”s attached to it.

2.1 Petal nodes

The tree defined by the petal file may have the following kinds of nodes:

〈PetalNode〉 → 〈Object〉 | 〈Literal〉 | 〈List〉

〈List〉 → (list 〈name〉 〈Object〉* )

〈Literal〉 → 〈Value〉 | 〈Tuple〉 | 〈Tag〉 | 〈Location〉 | 〈stringliteral〉 | 〈int〉 | 〈boolean〉 |
〈float〉

〈Value〉 → (value 〈name〉 〈stringliteral〉 )

〈Tuple〉 → ( 〈string〉 〈int〉 )

〈Tag〉 → @〈int〉

〈Location〉 → ( 〈int〉 , 〈int〉 )

All of them are leaf nodes except for Object and List. The literals will be defined in section 2.3.

2.2 General format of an object

An object always has a name and optionally a list of strings which I call parameters, and some
markup the form @2that we call “tags”. The first parameter is usually the name for that object,
the class name, e.g.. The second parameter may be the fully qualified name of an object. Tags

2



are used in the context of views only and their purpose is to provide some local numbering
mechanism.

Most objects have a “quid” property and can be either be identified by this unique num-
ber or by their fully-qualified name which is given by their position in the tree (e.g., “Logical
View::University::Professor ”).

Objects just consist of a list of key-value pair of properties, property names may occur multi-
ply in some case, i.e. are not necessarily unique within the list. We will usually not list all possible
properties, but only those of special interest.

〈Object〉 → (object 〈name〉 〈string〉* [〈Tag〉]
(〈name〉 〈PetalNode〉)* )

2.2.1 Example

The following examples shows how a plain “Student”class derived from class “Person” is repre-
sented. It has three properties (it may be more in fact) where two of them refer to literals and one
(“superclasses”) refers to a list of other classes which are identified via the quidu property. This
is a list, because languages like C++ allow multiple inheritance.

(object Class "Student"
quid "3AE987720329"
superclasses (list inheritance_relationship_list

(object Inheritance_Relationship
quid "3AE9877B01D8"
supplier "Logical View::University::Person"
quidu "3AE987400197"))

language "Java")

2.3 Literals

Strings come in two flavors: The standard string with text between two double quotes and multi-
line strings where each line starts with |.

〈multistring〉 → 〈newline〉 (| 〈text〉)+
〈string〉 → “〈text〉”
〈stringliteral〉 → 〈string〉 | 〈multistring〉

Qualified names have the form ClassCategory::Package::Class , for example, “Logical
View::University::Professor ”.

〈qname〉 → 〈string〉

The rest is pretty much standard.

〈name〉 → 〈char〉 (〈char〉 | 〈digit〉)*
〈text〉 → 〈anychar〉*
〈ident〉 → “〈hexnumber〉”
〈number〉 → 〈digit〉+
〈hexnumber〉 → (〈digit〉 | 〈hexdigit〉)+
〈digit〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hexdigit〉 → A | B | C |D | E | F
〈int〉 → [-] 〈number〉

3



〈float〉 → [-] 〈number〉 . 〈number〉
〈boolean〉 → TRUE | FALSE
〈char〉 → a | b | . . . | z | A | B | . . . | Z
〈ws〉 → 〈blank〉 | 〈tab〉

3 Petal file format

Starting from the root of the file the overall structure looks like this:

〈petalfile〉 → 〈petal〉 〈design〉

〈petal〉 → (object Petal
version 〈number〉
written 〈ident〉

charSet 〈number〉 )

〈design〉 → (object Design “Logical View”
is unit TRUE
is loaded TRUE
quid 〈ident〉
defaults 〈Defaults〉
root usecase package 〈UseCaseCategory〉
root category 〈LogicalCategory〉
root subsystem 〈SubSystem〉
process structure 〈Processes〉
properties 〈Properties〉
)

3.1 Class categories

Now the interesting part is the logical view of the petal file (property root category), because it
contains all the class diagrams. Therefore we just explored this part in depth. The root usecase package
contains use case diagrams, root subsystem component diagrams, and process structure contains
sequence diagrams. Their structure is quite similar to the LogicalCategory.

〈LogicalCategory〉 → (object Class Category “Logical View”
quid 〈ident〉
exportControl 〈string〉
. . .
logical models 〈List〉 // of Class Association and further ClassCategory objects
logical presentations 〈List〉 // of ClassDiagram objects
properties 〈Properties〉 )

〈Properties〉 → (object Properties
attributes 〈List〉 // of attribute objects
)

The first list specifies the possible contents of the class (and other) diagrams, classes and as-
sociations, in particular, and serves as a data model. It also may contain further LogicalCategory
objects and the data model for interaction/sequence diagrams in so called Mechanism objects.

4



The second list specifies the views (in this case class diagrams) in which these classes and associ-
ations may appear(see section 4).

3.2 Class

A class object (i.e. a member of the first list) contains all the information you might expect in a
class, encapsulated in further objects. It contains fields, methods, references to the superclass(es),
and the implemented interfaces. Classes may also have an access modifier and a stereotype
associated with them. Just the naming convention is a little bit different in Rose (in terms of usual
Java naming conventions): Methods are operations, fields are class attributes, access modfiers are
named “exportControl”, and “implement” is called “realize”.

〈Class〉 → (object Class 〈string〉 // class name
quid 〈ident〉
operations 〈List〉 // of Operation objects
class attributes 〈List〉 // of ClassAttribute objects
superclasses 〈List〉 // of InheritanceRelationship objects
used nodes 〈List〉 // of UsesRelationship objects
realized interfaces 〈List〉 // of RealizeRelationship objects
exportControl 〈string〉
language 〈string〉
stereotype 〈string〉 )

For (Java) interfaces the convention is to have an “Interface” stereotype for the class.

3.2.1 Operation objects

〈Operation〉 → (object Operation 〈string〉 // method name
quid 〈ident〉
parameters 〈List〉 // of formal Parameter objects
result 〈string〉 // return type
opExportControl 〈string〉
stereotype 〈string〉 )

3.2.2 Class attributes

〈ClassAttribute〉 → (object ClassAttribute 〈string〉 // attribute name
quid 〈ident〉
type 〈string〉 // attribute type
exportControl 〈string〉
stereotype 〈string〉 )

3.2.3 Inheritance relationship

〈InheritanceRelationship〉 → (object Inheritance Relationship 〈string〉
supplier 〈string〉 // eg Logical View: :Person
quidu 〈ident〉 // ID of referenced class eg Person
quid 〈ident〉 )

5



3.2.4 Uses relationship

〈UsesRelationship〉 → (object Uses Relationship 〈string〉
supplier 〈qname〉 // eg Logical View: :Person
quidu 〈ident〉 // ID of used class eg Person
quid 〈ident〉 )

3.2.5 Realize relationship

〈RealizeRelationship〉 → (object Realize Relationship 〈string〉
supplier 〈qname〉 quidu 〈ident〉 // ID of implemented interface
quid 〈ident〉 )

3.3 Associations

An association contains a list of (exactly two) roles, i.e. both ends of the association are described
with their role name, cardinality, etc..

〈Association〉 → (object Association 〈string〉 // association name
roles 〈List〉 // of Role objects
AssociationClass 〈qname〉 // of association class
quid 〈ident〉 )

3.3.1 Role objects

〈Role〉 → (object Role 〈string〉 // role name

supplier 〈qname〉 // associated with the given class
quidu 〈ident〉 // ID of associated class
is navigable 〈boolean〉 // navigable in both directions?
is aggregate 〈boolean〉 // aggregation?
Containment 〈string〉 // shared aggregation?
client cardinality 〈Value〉 // cardinality like 1. . . n
quid 〈ident〉 )

If “is navigable” is false, the association can only be read in one direction. “is aggregate”
specifies whether this is an aggregation (drawn as a rhomb), the “Containment” of the other
role specifies whether it is a shared aggregation, i.e., possible values are “By value” and “By
reference”. The “client cardinality” (obviously) specifies the cardinality of the role.

3.4 Mechanism objects

Mechanism object contain the abstract description of a sequence or collaboration diagram (which
are semantically equivalent).

TODO

4 Class and other diagrams

A Rose model may contain one or more class diagrams (and other kinds of diagrams not de-
scribed here). They are listed under the “logical presentations” property of the class category
“Logical View” (see section 3.1).

6



〈ClassDiagram〉 → (object ClassDiagram 〈string〉 // class name
quid 〈ident〉
title 〈string〉
zoom 〈int〉
max height 〈int〉
max width 〈int〉
origin x 〈int〉
origin y 〈int〉
items 〈List〉 // of View objects
)

4.1 View objects

There are several View objects that may be listed in the “items” list, in particular class views,
association views (for some peculiar reason named AssociationViewNew), note views, etc.. In
general there are view objects for eveything listed in the “logical models” property of the “Log-
ical View” (see section 3.1). View objects do have no quid property, but most of them have a
tag.

4.1.1 ClassView objects

〈ClassView〉 → (object ClassView 〈string〉 〈string〉 〈Tag〉// FQN and index
location 〈Location〉
quidu 〈ident〉
label 〈ItemLabel〉
stereotype 〈ItemLabel〉
)

〈ItemLabel〉 → (object ItemLabel
location 〈Location〉
Parent View 〈Tag〉 // Tag of the class view
label 〈string〉
)

The tag of the class view is a running number and the first string is always equal to “Class”
and the second refers to the fully qualified name of the class. In the ItemLabel object the interest-
ing properties are “label” which defines the text to be displayed and “Parent View” which is the
same tag as the surrounding class view.

4.1.2 Example

(object ClassView "Class" "Logical View::Mentor" @2
location (304, 1152)
label (object ItemLabel

Parent_View @2
location (172, 1145)
label "Mentor")

stereotype (object ItemLabel
Parent_View @2
location (172, 1095)
label "<<Interface>>")

icon "Interface"

7



icon_style "Label"
quidu "3AE987AB0209"
width 282)

4.1.3 AssociationViewNew objects

Associations (3.3) are displayed with AssociationViewNew objects, there is nothing really new
for them to the reader except that their labels are of a different type and that the roles of an
association are mapped to according RoleView objects. It’s probably best to see an example again:

(object AssociationViewNew "teach" @12
location (710, 720)
label (object SegLabel @13

Parent_View @12
location (710, 661)
font (object Font

italics TRUE))
line_color 3342489
quidu "3AE988420057"
roleview_list (list RoleViews

(object RoleView "$UNNAMED$0" @14
Parent_View @12
location (310, 0)
quidu "3AE988420332"
client @12
supplier @4
line_style 0)

(object RoleView "$UNNAMED$1" @15
Parent_View @12
location (310, 0)
quidu "3AE988420333"
client @12
supplier @8
line_style 0)))

4.1.4 Other view objects

There several other view objects describing relations between objects which are very similar in
pattern, in particular InheritView, RealizeView, AttachView, and UsesView. The general syntax
of them is:

〈OtherView〉 → (object 〈name〉 〈Tag〉
quidu 〈ident〉
client 〈Tag〉
supplier 〈Tag〉
)

For example, for an InheritView, the “quidu” would refer to the according InheritanceRela-
tionship object (see 3.2.3). The “client” and “supplier” property refer to the tags of the class view
objects that represent the class and its super class.

There are probably even more view objects we forgot to mention, NoteView, for instance, but
they’re quite similar.

8



5 The CrazyBeans framework

The file format is in fact not “object-oriented”, though it is obviously targeted to describe object-
oriented structures. This means that the hierarchy of classes and interfaces we developed for
Crazy Beans is rather arbitrary. We probably made some wrong assumptions and we tested
it only with the models we could get hold on. We tried to give the API some structure using
subclassing and through interfaces.

There are probably cases where a petal object parsed from a file does not define a certain
property although the API may claim so. We’re out of luck here, because we only can verify that
empirically. Sometimes worse the meaning of properties is often “overloaded”, i.e., the property
“stereotype” sometimes refers to a string (as one would assume), somtimes to a label, and may
be even a boolean value.

This being said, it works quite well for me by now and ww hope it does for your purposes,
too. distribution contains four packages which are briefly described in the following sections.
Please refer to the distributed API documentation and the examples for details.

5.1 The Petal package

This part of the API contained in the package cb.petal contains all the nodes (we could find)
that make up a Rose petal file. I.e, every entity found in a model is mapped to class. This is true
as well for basic structures such as lists and literals as well as for “petal objects” (see 2.2). There
are methods to set and remove properties.

Every petal object has an accept() method to be used in conjunction with the visitor pattern.
There also some predefined visitors that use certain traversal strategies. You should subclass
these instead of writing own visitor, because the visitor may change if new entities of interest are
discovered.

Petal objects also contain a pointer to their containing parent in the tree formed by a petal file.
They also have an init() method which is called after they have been added to model. This is
used, e.g., to maintain lookup information. The root of the tree is called PetalFile and contains
additional lookup methods, for example, to find an entity by its quid property or a class by its
fully qualified name.

5.2 The parser package

The classes in cb.parser simply make up a parser for petal files, the parser is written using
JavaCC [3]. It makes sure that all references (e.g. pointers to the parent node) are set up correctly
and that init() gets called.

5.3 The utility package

This package obviously contains useful classes for the API. Of special interest might be the
PetalObjectFactory , which allows to create petal objects with more comfort. It reads se-
rialized template objects from templates directory. The factory does not call init() on the
created objects, this is done when the objects have been added to the model.

5.4 The generator package

The framework defined here allows you to create classes (or whatever) from class diagrams. The
two main classes are the Generator which mainly takes care of the traversal and the Factory
which maps petal objects to some kind of abstract syntax tree (AST).

For you needs you’ll probably just have to subclass the factory and override the methods
of interest. The current default implementation is quit simplistic, in particular when mapping
associations. It simply maps them to a newly created classes that maintains the connections and
adds access methods to the connected classes.

9



References

[1] Klasse Objecten, http://www.klasse.nl/ocl/index.html . OCL: the standard constraint
language of the UML, 2001.

[2] Rational, http://www.rational.com/products/rose/index.jsp . Rational Rose,
2001.

[3] WebGain, http://www.webgain.com/products/metamata/java_doc.html . Java
Compiler Compiler, 2001.

A Quid identifiers and resolution of object references

The following informations can be found in the FAQ of the Rational Rose web site:
A unique id is simply the current time expressed as the number of seconds elapsed since

some point in time in the past, concatenated with some random nuber. The generation algorithm
also guarantees that the id will be unique during any given session of Rose and in general, will
be unique for all models/units generated on a single machine, assuming the date never gets set
backwards. It’s not likely that duplicate ids will be generated, however the resolution algorithm
makes it even less likely that it would lead to a problem, because:

1. most references are resolved by name first and only if name resolution fails, e.g. the name
changed while the referencing item was in an unloaded unit, will it check unique ids.

2. When resolving a unique id reference, the kind of thing being searched for is always used.
For example, if the code searches for uid 12345, kind Class, it would never find a package
even if there was one that had uid 12345.

How and when Rose needs these UIDs, i.e. how Rose is accessing elements. This is done with
the following algorithm:

1. Rose searches after the Qualified Name of the element (i.e. package-hierarchy::element.name

2. When not finding the element, Rose searches within all model elements of the same element
type (i.e. it doesn’t search the use cases, if it’s searching a class) after the element with the
same UID.

3. if it doesn’t find the element type WITH matching UID, it places the (M) circle sign in the
diagram, or places parenthesis around the textual references. (i.e. if you attached a class to
an object in a scenario diagram, and then delete the class, the name will stay there, but in
paranthesis. If you then recreate the class (which gives it another UID!), it is ’reconnected’
to the object)

10


